Novel findings and strategies for fiber biotechnology
May 8, 2014

Breeding & Genetic improvement Biomol - Biotechnology
A negative correlation between fiber quality traits and the key agronomic characteristics such as yield and maturity makes it a challenging task to improve cotton fiber quality traits using conventional breeding.The improvement of key characteristics of fiber quality is one of the major objectives of cotton biotechnology worldwide. Several key findings published lately by several cotton research groups fueled a good evidence and promise for biotechnological improvement of cotton fiber. The report published by Guan et al. 2014 in January issue of Nature communications highlight the role of GhMYB2A and GhMYB2D and its tans-acting regulatory microRNA signatures, miR828 and miR858, in trichome and fiber development. Another report in the same issue of Nature Communications by our group highlighted the involvement of cotton phytochrome gene family in the simultaneous improvement of major fiber characteristics and several important agronomic traits of Upland cotton utilizing RNA interference of the targeted light regulatory gene(s). Recent report of Han et al. in the March issue of Plant Biotechnology journal demonstrated that Phytosulfokine-α (PSK-α) signaling may regulate the respiratory electron-transport chain and reactive oxygen species to affect cotton fibre development. Results of all these recent discoveries on regulating novel genetic signatures through transgenomics approaches not only expanded our understanding on the complex cotton fiber development process but also provided novel innovative strategies to improve cotton fiber quality to increase competitiveness of natural fiber over synthetics.
Be the first to comment this